3D Engine Design
for Virtual Globes

Patrick Cozzi and Kevin Ring



Editorial, Sales, and Customer Service Office

A K Peters, Ltd.

5 Commonwealth Road, Suite 2C
Natick, MA 01760
www.akpeters.com

Copyright (©) 2011 by A K Peters, Ltd.

All rights reserved. No part of the material protected by this copyright
notice may be reproduced or utilized in any form, electronic or mechani-
cal, including photocopying, recording, or by any information storage and
retrieval system, without written permission from the copyright owner.

Library of Congress Cataloging-in-Publication Data

To be determined

Printed in the United States of America
1514 13 12 11 10987654321



4.3. GPU Ray Casting 149

Run the night-lights example with a frame-rate utility. Note the frame

rate when viewing just the daytime side of the globe and just the night-

time side. Why is the frame rate higher for the nighttime side? Because OOOO Try This
the night-lights texture is a lower resolution than the daytime texture and

does not require any lighting computations. This shows using dynamic

branching to improve performance.

Virtual globe applications use real-world data like this night-light tex-
ture derived from satellite imagery. On the other hand, video games gener-
ally focus on creating a wide array of convincing artificial data using very
little memory. For example, EVE Online takes an interesting approach to
rendering night lights for their planets [109]. Instead of relying on a night-
light texture whose texels are directly looked up, a texture atlas of night
lights is used. The spherically mapped texture coordinates are used to look
up surrogate texture coordinates, which map into the texture atlas. This
allows a lot of variation from a single texture atlas because sections can be
rotated and mirrored.

Rendering night lights is one of many uses for multitexturing in globe
rendering. Other uses include cloud textures and gloss maps to show specu-
lar highlights on bodies of waters [57,147]. Before the multitexturing hard-
ware was available, effects like these required multiple rendering passes.
STK, being one of the first products to implement night lights, uses a
multiple-pass approach.

4.3 GPU Ray Casting

GPUs are built to rasterize triangles at very rapid rates. The purpose of
ellipsoid-tessellation algorithms is to create triangles that approximate the
shape of a globe. These triangles are fed to the GPU, which rapidly ras-
terizes them into shaded pixels, creating an interactive visualization of the
globe. This process is very fast because it is embarrassingly parallel; indi-
vidual triangles and fragments are processed independently, in a massively
parallel fashion. Since tessellation is required, rendering a globe this way
is not without its flaws:

e No single tessellation is perfect; each has different strengths and weak-
nesses.

e Under-tessellation leads to a coarse triangle mesh that does not ap-
proximate the surface well, and over-tessellation creates too many



150

4. Globe Rendering

triangles, negatively affecting performance and memory usage. View-
dependent level-of-detail algorithms are required for most applica-
tions to strike a balance.

e Although GPUs exploit the parallelism of rasterization, memories
are not keeping pace with the increasing computation power, so a
large number of triangles can negatively impact performance. This is
especially true of some level-of-detail algorithms where new meshes
are frequently sent over the system bus.

Ray tracing is an alternative to rasterization. Rasterization starts with
triangles and ends with pixels. Ray tracing takes the opposite approach:
it starts with pixels and asks what triangle(s), or objects in general, con-
tribute to the color of this pixel. For perspective views, a ray is cast from
the eye through each pixel into the scene. In the simplest case, called ray
casting, the first object intersecting each ray is found, and lighting compu-
tations are performed to produce the final image.

A strength of ray casting is that objects do not need to be tessellated
into triangles for rendering. If we can figure out how to intersect a ray with
an object, then we can render it. Therefore, no tessellation is required to
render a globe represented by an ellipsoid because there is a well-known
equation for intersecting a ray with an ellipsoid’s implicit surface. The
benefits of ray casting a globe include the following;:

e The ellipsoid is automatically rendered with an infinite level of detail.
For example, as the viewer zooms in, the underlying triangle mesh
does not become apparent because there is no triangle mesh; inter-
secting a ray with an ellipsoid produces an infinitely smooth surface.

e Since there are no triangles, there is no concern about creating thin
triangles, triangles crossing the poles, or triangles crossing the IDL.
Many of the weaknesses of tessellation algorithms go away.

e Significantly less memory is required since a triangle mesh is not
stored or sent across the system bus. This is particularly important
in a world where size is speed.

Since current GPUs are built for rasterization, you may wonder how
to efficiently ray cast a globe. In a naive CPU implementation, a nested
for loop iterates over each pixel in the scene and performs a ray/ellip-
soid intersection. Like rasterization, ray casting is embarrassingly parallel.
Therefore, a wide array of optimizations are possible on today’s CPUs, in-
cluding casting each ray in a separate thread and utilizing single instruction
multiple data (SIMD) instructions. Even with these optimizations, CPUs



4.3. GPU Ray Casting

151

(a) (b) (c)

Figure 4.17. In GPU ray casting, (a) a box is rendered to (b) invoke a ray-casting
fragment shader that finds the ellipsoid’s visible surface. When an intersection
is found, (c) the geodetic surface normal is used for shading.

do not support the massive parallelism of GPUs. Since GPUs are built for
rasterization, the question is how do we use them for efficient ray casting?

Fragment shaders provide the perfect vehicle for ray casting on the
GPU. Instead of tessellating an ellipsoid, create geometry for a bounding
box around the ellipsoid. Then, render this box using normal rasterization
and cast a ray from the eye to each fragment created by the box. If the ray
intersects the inscribed ellipsoid, shade the fragment; otherwise, discard it.

The box is rendered with front-face culling, as shown in Figure 4.17(a).
Front-facing culling is used instead of back-face culling so the globe still
appears when the viewer is inside the box.

This is the only geometry that needs to be processed to render the
ellipsoid, a constant vertex load of 12 triangles. With front-face culling,
fragments for six of the triangles are processed for most views. The re-
sult is that a fragment shader is run for each fragment we want to cast
a ray through. Since the fragment shader can access the camera’s world-
space position through a uniform, and the vertex shader can pass the ver-
tex’s interpolated world-space position to the fragment shader, a ray can
be constructed from the eye through each fragment’s position.* The ray
simply has an origin of og_cameraEye and a direction of normalize(world
Position — og_cameraEye).

The fragment shader also needs access to the ellipsoid’s center and radii.
Since it is assumed that the ellipsoid is centered at the origin, the fragment
shader just needs a uniform for the ellipsoid’s radii. In practice, intersecting
a ray with an ellipsoid requires ﬁ, so that should be precomputed once
on the CPU and passed to the fragment shader as a uniform. Given the

4In this case, a ray is cast in world coordinates with the ellipsoid’s center at the
origin. It is also common to perform ray casting in eye coordinates, where the ray’s
origin is the coordinate system’s origin. What really matters is that the ray and object
are in the same coordinate system.



152

4. Globe Rendering

ray and ellipsoid information, Listing 4.16 shows a fragment shader that
colors fragments green if a ray through the fragment intersects the ellipsoid
or red if the ray does not intersect, as shown in Figure 4.17(b).

This shader has two shortcomings. First, it does not do any actual
shading. Fortunately, given the position and surface normal of the ray in-
tersection, shading can utilize the same techniques used throughout this
chapter, namely LightIntensity() and ComputeTextureCoordinates(). List-
ing 4.17 adds shading by computing the position of the intersection along
the ray using i.Time and shading as usual. If the ray does not intersect
the ellipsoid, the fragment is discarded. Unfortunately, using discard has
the adverse effect of disabling GPU depth buffer optimizations, including
fine-grained early-z and coarse-grained z-cull, as discussed in Section 12.4.5.

in vec3 worldPosition;

out vec3 fragmentColor;

uniform vec3 og_cameraEye;

uniform vec3 u_globeOneOverRadiiSquared;

struct Intersection

bool Intersects;
float Time; // Time of intersection along ray

I

Intersection RayIntersectEllipsoid(vec3 rayOrigin,
vec3 rayDirection, vec3 oneOverEllipsoidRadiiSquared)

{7/
void main ()
vec3 rayDirection = normalize(worldPosition — og_cameraEye);
Intersection i = RayIntersectEllipsoid(og_cameraEye ,
rayDirection, u_globeOneOverRadiiSquared);
fragmentColor = vec3(i.Intersects, !i.Intersects, 0.0);
}
Listing 4.16. Base GLSL fragment shader for ray casting.
/] ...

vec3 GeodeticSurfaceNormal (vec3 positionOnEllipsoid,
vec3 oneOverEllipsoidRadiiSquared)
{

return normalize (positionOnEllipsoid =
oneOverEllipsoidRadiiSquared);

}

void main ()
{
vec3 rayDirection = normalize(worldPosition — og_cameraEye);
Intersection i = RayIntersectEllipsoid(og_cameraEye ,
rayDirection, u_globeOneOverRadiiSquared);
if (i.Intersects)

{




4.3. GPU Ray Casting

153

vec3 position = og_cameraEye + (i.Time #% rayDirection);
vec3 normal = GeodeticSurfaceNormal (position,
u_globeOneOverRadiiSquared);

vec3 tolLight = normalize(og_cameralightPosition — position);
vec3 toEye = normalize (og_cameraEye — position);
float intensity = LightIntensity (normal, toLight, toEye,

og_diffuseSpecularAmbientShininess);

fragmentColor = intensity * texture(og_texture0,
ComputeTextureCoordinates (normal)).rgb;
}
else
discard ;
}

}

Listing 4.17. Shading or discarding a fragment based on a ray cast.

float ComputeWorldPositionDepth(vec3 position)
{
vecd v = og_modelViewPerspectiveMatrix * vec4(position, 1);
v.z /= v.w;
v.z = (v.z + 1.0) % 0.5;
return v.z;

}

Listing 4.18. Computing depth for a world-space position.

The remaining shortcoming, which may not be obvious until other ob-
jects are rendered in the scene, is that incorrect depth values are written.
When an intersection occurs, the box’s depth is written instead of the ellip-
soid’s depth. This can be corrected by computing the ellipsoid’s depth, as
shown in Listing 4.18, and writing it to gl -FragDepth. Depth is computed
by transforming the world-space positions of the intersection into clip coor-
dinates, then transforming this z-value into normalized device coordinates
and, finally, into window coordinates. The final result of GPU ray casting,
with shading and correct depth, is shown in Figure 4.17(c).

Since this algorithm doesn’t have any overdraw, all the red pixels in Fig-
ure 4.17(b) are wasted fragment shading. A tessellated ellipsoid rendered
with back-face culling does not have wasted fragments. On most GPUs, this
is not as bad as it seems since the dynamic branch will avoid the shading
computations [135,144, 168], including the expensive inverse trigonometry
for texture-coordinate generation. Furthermore, since the branches are co-
herent, that is, adjacent fragments in screen space are likely to take the
same branch, except around the ellipsoid’s silhouette, the GPU’s paral-
lelism is used well [168].



154

4. Globe Rendering

To reduce the number of rays that miss the ellipsoid, a viewport-aligned
convex polygon bounding the ellipsoid from the viewer’s perspective can be
used instead of a bounding box [30]. The number of points in the bounding
polygon determine how tight the fit is and, thus, how many rays miss the
ellipsoid. This creates a trade-off between vertex and fragment processing.

GPU ray casting an ellipsoid fits seamlessly into the rasterization
pipeline, making it an attractive alternative to rendering a tessellated ap-
proximation. In the general case, GPU ray casting, and full ray tracing in
particular, is difficult. Not all objects have an efficient ray intersection test
like an ellipsoid, and large scenes require hierarchical spatial data structures
for quickly finding which objects a ray may intersect. These types of linked
data structures are difficult to implement on today’s GPUs, especially for
dynamic scenes. Furthermore, in ray tracing, the number of rays quickly
explodes with effects like soft shadows and antialiasing. Nonetheless, GPU
ray tracing is a promising, active area of research [134,178].

4.4 Resources

A detailed description of computing a polygonal approximation to a sphere
using subdivision surfaces, aimed towards introductory graphics students,
is provided by Angel [7]. The book is an excellent introduction to computer
graphics in general. A survey of subdivision-surface algorithms is presented
in Real-Time Rendering [3]. The book itself is an indispensable survey of
real-time rendering. See “The Orange Book” for more information on using
multitexturing in fragment shaders to render the Earth [147]. The book is
generally useful as it thoroughly covers GLSL and provides a wide range
of example shaders.

An ellipsoid tessellation based on the honeycomb [39], a figure derived
from a soccer ball, may prove advantageous over subdividing platonic solids,
which leads to a nonuniform tessellation. Another alternative to the tes-
sellation algorithms discussed in this chapter is the HEALPix [65].

A series on procedurally generating 3D planets covers many relevant
topics, including cube-map tessellation, level of detail, and shading [182].
An experimental globe-tessellation algorithm for NASA World Wind is
described by Miller and Gaskins [116].

The entire field of real-time ray tracing is discussed by Wald [178], in-
cluding GPU approaches. A high-level discussion on ray tracing virtual
globes, with a focus on improving visual quality, is presented by Chris-
ten [26].



