
3D Engine Design

for Virtual Globes

Patrick Cozzi and Kevin Ring

Editorial, Sales, and Customer Service Office

A K Peters, Ltd.
5 Commonwealth Road, Suite 2C
Natick, MA 01760
www.akpeters.com

Copyright 2011 by A K Peters, Ltd.

All rights reserved. No part of the material protected by this copyright
notice may be reproduced or utilized in any form, electronic or mechani-
cal, including photocopying, recording, or by any information storage and
retrieval system, without written permission from the copyright owner.

Library of Congress Cataloging-in-Publication Data

To be determined

Printed in the United States of America

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1
Introduction

Virtual globes are known for their ability to render massive real-world ter-
rain, imagery, and vector datasets. The servers providing data to virtual
globes such as Google Earth and NASA World Wind host datasets mea-
suring in the terabytes. In fact, in 2006, approximately 70 terabytes of
compressed imagery were stored in Bigtable to serve Google Earth and
Google Maps [24]. No doubt, that number is significantly higher today.

Obviously, implementing a 3D engine for virtual globes requires careful
management of these datasets. Storing the entire world in memory and
brute force rendering are certainly out of the question. Virtual globes,
though, face additional rendering challenges beyond massive data manage-
ment. This chapter presents these unique challenges and paves the way
forward.

1.1 Rendering Challenges in Virtual Globes

In a virtual globe, one moment the viewer may be viewing Earth from a
distance (see Figure 1.1(a)); the next moment, the viewer may zoom in to a
hilly valley (see Figure 1.1(b)) or to street level in a city (see Figure 1.1(c)).
All the while, real-world data appropriate for the given view are paged in
and precisely rendered.

The freedom of exploration and the ability to visualize incredible
amounts of data give virtual globes their appeal. These factors also lead
to a number of interesting and unique rendering challenges:

• Precision. Given the sheer size of Earth and the ability for users to
view the globe as a whole or zoom in to street level, virtual globes
require a large view distance and large world coordinates. Trying to
render a massive scene by näıvely using a very close near plane; very

1

2 1. Introduction

(a) (b)

(c)

Figure 1.1. Virtual globes allow viewing at varying scales: from (a) the entire
globe to (b) and (c) street level. (a) 2010 Tele Atlas; (b) 2010 Europa
Technologies, US Dept of State Geographer; (c) 2010 Google, US Census
Bureau, Image USDA Farm Service Agency. (Images taken using Google Earth.)

distant far plane; and large, single-precision, floating-point coordi-
nates leads to z-fighting artifacts and jittering, as shown in Figures 1.2
and 1.3. Both artifacts are even more noticeable as the viewer moves.
Strategies for eliminating these artifacts are presented in Part II.

• Accuracy. In addition to eliminating rendering artifacts caused by
precision errors, virtual globes should also model Earth accurately.
Assuming Earth is a perfect sphere allows for many simplifications,
but Earth is actually about 21 km longer at the equator than at
the poles. Failing to take this into account introduces errors when
positioning air and space assets. Chapter 2 describes the related
mathematics.

1.1. Rendering Challenges in Virtual Globes 3

(a) (b)

Figure 1.2. (a) Jitter artifacts caused by precision errors in large worlds. Insuffi-
cient precision in 32-bit floating-point numbers creates incorrect vertex positions.
(b) Without jittering. (Images courtesy of Brano Kemen, Outerra.)

• Curvature. The curvature of Earth, whether modeled with a sphere or
a more accurate representation, presents additional challenges com-
pared to many graphics applications where the world is extruded
from a plane (see Figure 1.4): lines in a planar world are curves on
Earth, oversampling can occur as latitude approaches 90◦ and −90◦,
a singularity exists at the poles, and special care is often needed to
handle the International Date Line. These concerns are addressed
throughout this book, including in our discussion of globe rendering
in Chapter 4, polygons in Chapter 8, and mapping geometry clipmap-
ping to a globe in Chapter 13.

(a) (b)

Figure 1.3. (a) Z-fighting and jittering artifacts caused by precision errors in large
worlds. In z-fighting, fragments from different objects map to the same depth
value, causing tearing artifacts. (b) Without z-fighting and jittering. (Images
courtesy of Aleksandar Dimitrijević, University of Nǐs.)

4 1. Introduction

(a) (b)

(c) (d)

(e) (f)

Figure 1.4. (a) Lines connecting surface points cut underneath a globe; instead,
(b) points should be connected with a curve. Likewise, (c) polygons composed of
triangles cut under a globe unless (d) curvature is taken into account. Mapping
flat-world algorithms, (e) like geometry clipmapping terrain, to a globe can lead
to (f) oversampling near the poles. (a) and (c) are shown without depth testing.
(b) and (d) use the depth-testing technique presented in Chapter 7 to avoid
z-fighting with the globe.

1.2. Contents Overview 5

• Massive datasets. Real-world data have significant storage require-
ments. Typical datasets will not fit into GPU memory, system mem-
ory, or a local hard disk. Instead, virtual globes rely on server-side
data that are paged in based on view parameters using a technique
called out-of-core rendering, which is discussed in the context of ter-
rain in Chapter 12 and throughout Part IV.

• Multithreading. In many applications, multithreading is considered
to be only a performance enhancement. In virtual globes, it is an
essential part of the 3D engine. As the viewer moves, virtual globes
are constantly paging in data and processing it for rendering. Doing
so in the rendering thread causes severe stalls, making the application
unusable. Instead, virtual globe resources are loaded and processed
in one or more separate threads, as discussed in Chapter 10.

• Few simplifying assumptions. Given their unrestrictive nature, vir-
tual globes cannot take advantage of many of the simplifying assump-
tions that other graphics applications can.

A viewer may zoom from a global view to a local view or vice versa
in an instant. This challenges techniques that rely on controlling
the viewer’s speed or viewable area. For example, flight simulators
know the plane’s top speed and first-person shooters know the player’s
maximum running speed. This knowledge can be used to prefetch
data from secondary storage. With the freedom of virtual globes,
these techniques become more difficult.

Using real-world data also makes procedural techniques less applica-
ble. The realism in virtual globes comes from higher-resolution data,
which generally cannot be synthesized at runtime. For example, pro-
cedurally generating terrains or clouds can still be done, but virtual
globe users are most often interested in real terrains and clouds.

This book address these rendering challenges and more.

1.2 Contents Overview

The remaining chapters are divided into four parts: fundamentals, preci-
sion, vector data, and terrain.

1.2.1 Fundamentals

The fundamentals part contains chapters on low-level virtual globe com-
ponents and basic globe rendering algorithms.

6 1. Introduction

• Chapter 2: Math Foundations. This chapter introduces useful math
for virtual globes, including ellipsoids, common virtual globe coordi-
nate systems, and conversions between coordinate systems.

• Chapter 3: Renderer Design. Many 3D engines, including virtual
globes, do not call rendering APIs such as OpenGL directly, and
instead use an abstraction layer. This chapter details the design
rationale behind the renderer in our example code.

• Chapter 4: Globe Rendering. This chapter presents several funda-
mental algorithms for tessellating and shading an ellipsoidal globe.

1.2.2 Precision

Given the massive scale of Earth, virtual globes are susceptible to rendering
artifacts caused by precision errors that many other 3D applications are
not. This part details the causes and solutions to these precision problems.

• Chapter 5: Vertex Transform Precision. The 32-bit precision on most
of today’s GPUs can cause objects in massive worlds to jitter, that
is, literally bounce around in a jerky manner as the viewer moves.
This chapter surveys several solutions to this problem.

• Chapter 6: Depth Buffer Precision. Since virtual globes call for a
close near plane and a distant far plane, extra care needs to be taken
to avoid z-fighting due to the nonlinear nature of the depth buffer.
This chapter presents a wide range of techniques for eliminating this
artifact.

1.2.3 Vector Data

Vector data, such as political boundaries and city locations, give virtual
globes much of their richness. This part presents algorithms for rendering
vector data and multithreading techniques to relieve the rendering thread
of preparing vector data, or resources in general.

• Chapter 7: Vector Data and Polylines. This chapter includes a brief
introduction to vector data and geometry-shader-based algorithms
for rendering polylines.

• Chapter 8: Polygons. This chapter presents algorithms for rendering
filled polygons on an ellipsoid using a traditional tessellation and
subdivision approach and rendering filled polygons on terrain using
shadow volumes.

1.2. Contents Overview 7

• Chapter 9: Billboards. Billboards are used in virtual globes to display
text and highlight places of interest. This chapter covers geometry-
shader-based billboards and texture atlas creation and usage.

• Chapter 10: Exploiting Parallelism in Resource Preparation. Given
the large datasets used by virtual globes, multithreading is a must.
This chapter reviews parallelism in computer architecture, presents
software architectures for multithreading in virtual globes, and de-
mystifies multithreading in OpenGL.

1.2.4 Terrain

At the heart of a virtual globe is a terrain engine capable of rendering mas-
sive terrains. This final part starts with terrain fundamentals, then moves
on to rendering real-world terrain datasets using level of detail (LOD) and
out-of-core techniques.

• Chapter 11: Terrain Basics. This chapter introduces height-map-
based terrain with a discussion of rendering algorithms, normal com-
putations, and shading, both texture-based and procedural.

• Chapter 12: Massive-Terrain Rendering. Rendering real-world ter-
rain accurately mapped to an ellipsoid requires the techniques dis-
cussed in this chapter, including LOD, culling, and out-of-core ren-
dering. The next two chapters build on this material with specific
LOD algorithms.

• Chapter 13: Geometry Clipmapping. Geometry clipmapping is an
LOD technique based on nested, regular grids. This chapter details
its implementation, as well as out-of-core and ellipsoid extensions.

• Chapter 14: Chunked LOD. Chunked LOD is a popular terrain LOD
technique that uses hierarchical levels of detail. This chapter dis-
cusses its implementation and extensions.

There is also an appendix on implementing a message queue for com-
municating between threads.

We’ve ordered the parts and chapters such that the book flows from
start to finish. You don’t have to read the chapters in order though; we
certainly didn’t write them in order. Just ensure you are familiar with
the terms and high level-concepts in Chapters 2 and 3, then jump to the
chapter that interests you most. The text contains cross-references so you
know where to go for more information.

There are Patrick Says and Kevin Says boxes throughout the text.
These are the voices of the individual authors and are used to tell a story,

8 1. Introduction

usually an implementation war story, or to inject an opinion without cloud-
ing the main text. We hope these lighten up the text and provide deeper
insight into our experiences.

The text also includes Question and Try This boxes that provide ques-
tions to think about and modifications or enhancements to make to the
example code.

1.3 OpenGlobe Architecture

A large amount of example code accompanies this book. These examples
were written from scratch, specifically for this book. In fact, just as much
effort went into the example code as went into the book you hold in your
hands. As such, treat the examples as an essential part of your learning—
take the time to run them and experiment. Tweaking code and observing
the result is time well spent.

Together, the examples form a solid foundation for a 3D engine designed
for virtual globes. As such, we’ve named the example code OpenGlobe and
provide it under the liberal MIT License. Use it as is in your commercial
products or select bits and pieces for your personal projects. Download it
from our website: http://www.virtualglobebook.com/.

The code is written in C# using OpenGL1 and GLSL. C#’s clean syn-
tax and semantics allow us to focus on the graphics algorithms without
getting bogged down in language minutiae. We’ve avoided lesser-known
C# language features, so if your background is in another object-oriented
language, you will have no problem following the examples. Likewise, we’ve
favored clean, concise, readable code over micro-optimizations.

Given that the OpenGL 3.3 core profile is used, we are taking a modern,
fully shader-based approach. In Chapter 3, we build an abstract renderer
implemented with OpenGL. Later chapters use this renderer, nicely tucking
away the OpenGL API details so we can focus on virtual globe and terrain
specifics.

OpenGlobe includes implementations for many of the presented algo-
rithms, making the codebase reasonably large. Using the conservative met-
ric of counting only the number of semicolons, it contains over 16,000 lines
of C# code in over 400 files, and over 1,800 lines of GLSL code in over 80
files. We strongly encourage you to build, run, and experiment with the
code. As such, we provide a brief overview of the engine’s organization to
help guide you.

OpenGlobe is organized into three assemblies:2 OpenGlobe.Core.dll,
OpenGlobe.Renderer.dll, and OpenGlobe.Scene.dll. As shown in Figure 1.5,

1OpenGL is accessed from C# using OpenTK: http://www.opentk.com/.
2Assembly is the .NET term for a compiled code library (i.e., an .exe or .dll file).

1.3. OpenGlobe Architecture 9

����

��������

�	���

�
�������������

�����	�����

�
��
��
��
��

Figure 1.5. The stack of OpenGlobe assemblies.

these assemblies are layered such that Renderer depends on Core, and Scene
depends on Renderer and Core. All three assemblies depend on the .NET
system libraries, similar to how an application written in C depends on the
C standard library.

Each OpenGlobe assembly has types that build on its dependent as-
semblies:

• Core. The Core assembly exposes fundamental types such as vec-
tors, matrices, geographic positions, and the Ellipsoid class discussed
in Chapter 2. This assembly also contains geometric algorithms, in-
cluding the tessellation algorithms presented in Chapters 4 and 8,
and engine infrastructure, such as the message queue discussed in
Appendix A.

• Renderer. The Renderer assembly contains types that present an
abstraction for managing GPU resources and issuing draw calls. Its
design is discussed in depth in Chapter 3. Instead of calling OpenGL
directly, an application built using OpenGlobe uses types in this as-
sembly.

• Scene. The Scene assembly contains types that implement rendering
algorithms using the Renderer assembly. This includes algorithms for
globes (see Chapter 4), vector data (see Chapters 7–9), terrain shad-
ing (see Chapter 11), and geometry clipmapping (see Chapter 13).

Each assembly exposes types in a namespace corresponding to the as-
sembly’s filename. Therefore, there are three public namespaces: Open

Globe.Core, OpenGlobe.Renderer, and OpenGlobe.Scene.
An application may depend on one, two, or all three assemblies. For

example, a command line tool for geometric processing may depend just
on Core, an application that implements its own rendering algorithms may
depend on Core and Renderer, and an application that uses high-level
objects like globes and terrain would depend on all three assemblies.

10 1. Introduction

The example applications generally fall into the last category and usu-
ally consist of one main .cs file with a simple OnRenderFrame implementation
that clears the framebuffer and issues Render for a few objects created from
the Scene assembly.

OpenGlobe requires a video card supporting OpenGL 3.3, or equiva-
lently, Shader Model 4. These cards came out in 2006 and are now very
reasonably priced. This includes the NVIDIA GeForce 8 series or later and
ATI Radeon 2000 series or later GPUs. Make sure to upgrade to the most
recent drivers.

All examples compile and run on Windows and Linux. On Windows,
we recommend building with any version of Visual C# 2010, including
the free Express Edition.3 On Linux, we recommend MonoDevelop.4 We
have tested on Windows XP, Vista, and 7, as well as Ubuntu 10.04 and
10.10 with Mono 2.4.4 and 2.6.7, respectively. At the time of this writ-
ing, OpenGL 3.3 drivers were not available on OS X. Please check our
website for the most up-to-date list of supported platforms and integrated
development environments (IDEs).

To build and run, simply open Source\OpenGlobe.sln in your .NET de-
velopment environment, build the entire solution, then select an example
to run.

We are committed to filling these pages with descriptive text, figures,
and tables, not verbose code listing upon listing. Therefore, we’ve tried to
provide relevant, concise code listings that supplement the core content. To
keep listings concise, some error checking may be omitted, and #version

330 is always omitted in GLSL code. The code on our website includes full
error checking and #version directives.

1.4 Conventions

This book uses a few conventions. Scalars and points are lowercase and
italicized (e.g., s and p), vectors are bold (e.g., v), normalized vectors
also have a hat over them (e.g., n̂), and matrices are uppercase and bold
(e.g., M).

Unless otherwise noted, units in Cartesian coordinates are in meters (m).
In text, angles, such as longitude and latitude, are in degrees (◦). In code
examples, angles are in radians because C# and GLSL functions expect
radians.

3http://www.microsoft.com/express/Windows/
4http://monodevelop.com/

