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Administrivia

● Download course slides:

http://www.virtualglobebook.com/

● Recording is OK
● Ask questions anytime
● Come and go as you please

We are informal

http://www.virtualglobebook.com/


Course Goals

● Enjoy pretty pictures and demos
● To gain an appreciation for and understanding of 

graphics engines in virtual globes
● Useful for

○ Implementors
○ Integrators

 

● This course is not
○ A direct comparison of virtual globe engines 
○ A tutorial on rendering effects like atmospheres 

and oceans - maybe next year :)



Course Overview

● Our Background
● Ellipsoids
● Precision
● Parallelism
● Terrain



Our Background



STK

● First had a 3D, 
spinning         globe in 
1993

● STK/VO - Visualization
        Option

● Ran on high-end, SGI IRIX
        workstations

● Emphasis on space and
        analytical accuracy

● Less emphasis on
        terrain and imagery (!)



STK Today

 



STK Today

 



Our Book

This course is based on a 
subset of our upcoming 
book:

3D Engine Design for Virtual 
Globes

http://www.virtualglobebook.com/

http://www.virtualglobebook.com/


Foundations



Geographic and Cartesian Coordinates

● Lots of geospatial data uses geographic coordinates 
(longitude, latitude, height)

○ KML, ESRI Shapefiles, etc.
 

● The video card wants Cartesian coordinates (x, y, z)
○ (long, lat, height) != (x, y, z)
○ What to do?



Geographic and Cartesian Coordinates

● Pick a Cartesian coordinate system, .e.g.,
○ WGS84 Coordinate System

■ World Geodetic System 1984 



Geographic and Cartesian Coordinates

● Conversions between coordinate systems
 

○ Geographic           Cartesian
■ Simple and closed form

 
○ Geographic           Cartesian

■ Simple and closed form when height == 0 
■ General case is iterative (our algorithm, at least)

■ Converges quickly for Earth 



Ellipsoids

● WGS84 Ellipsoid
○ National Geospatial-Intelligence Agency’s (NGA) 

latest model of Earth
○ Equatorial radius:  6,378,137 m
○ Polar radius:  6,356,752.3142 m
○ About 21,384 m longer at the equator than at the 

poles
■ Not too important for imagery on the globe
■ Important when positioning objects above the 

ground, e.g., aircraft, satellites, etc.

(exaggerated) 



Ellipsoids

● Geodetic vs. Geocentric surface normals

● Geodetic vs. Geocentric latitude



Demos

● Geodetic vs. Geocentric normals



Ellipsoid Representations

 



Ellipsoid Representations

● Our ellipsoid is defined by an equatorial radius and 
polar radius, but the video card wants triangles

 
● Solution:  tessellation or ray casting 



Platonic Solid Subdivision



Cube-Map Tessellation



Geographic-Grid Tessellation



Tessellation-Algorithm Comparisons

 



GPU Ray Casting

● Tessellation
○ Each algorithm has strengths and weaknesses
○ Needs LOD to balance triangle count vs. visual quality

● Rasterization:  triangles          pixels
Ray tracing:  what triangles, or objects, affect a pixel?

● Ray cast ellipsoid's implicit surface
○ Infinite level of detail
○ No triangles - no problems at poles or IDL
○ Trivial memory requirements



GPU Ray Casting

● Downside:  GPU 32-bit precision
○ Speaking of precision...



Demos

● GPU Ray Casting



High Precision Rendering



High Precision Rendering

● Rendering precision:  a difference between virtual 
globes and most game engines.  How do we support:

○ Large WGS84 coordinates with 32-bit GPUs?
■ Vertex transform precision

○ Long view distances with a non-linear depth 
distribution?

■ Depth buffer precision

● Disclaimer:  Nowadays not all GPUs are 32-bit



Demo

● Jittering caused by vertex transform precision
○ http://blogs.agi.com/insight3d/index.php/2008/09/03/precisions-precisions/

http://blogs.agi.com/insight3d/index.php/2008/09/03/precisions-precisions/


Vertex Transform Precision

● CPUs:  64-bit
● Many GPUs:  32-bit

● Cause of jittering:  insufficient precision in 32-bit floating-
point represents for large values like 6,378,137.

● IEEE-754 rules of thumb
○ 32-bit:  7 accurate decimal digits
○ 64-bit:  16 accurate decimal digits



Vertex Transform Precision

● Gaps between representable floating-point values

● Gap increases as values get further away from zero



Vertex Transform Precision

● Example matrix-vector multiply done in vertex shader:



Vertex Transform Precision

● Example matrix-vector multiply done in vertex shader:

● Jitter at 800 m view distance, but not 100,000 m.  Why?

Large WGS84 
position

Large 
translation



Vertex Transform Precision

Solutions
● Scaling coordinates doesn't help.  Why?
● Use the CPU's double precision or emulate it 

on the GPU



Render Relative to Center (RTC)



Render Relative to Center (RTC)

● 1 cm accuracy for radius up to 131,071 m
● So, how do you render this?



Render Relative to Eye (RTE)

● Per-vertex on the CPU or on the GPU 
with emulated double precision in the 
vertex shader

See [Ohlarik08]



Depth Buffer Precision

● How can we render very close and very far 
objects in the same scene?

Image courtesy of Brano Kemen, Outerra



Depth Buffer Precision

● How can we render very close and very far 
objects in the same scene?



Depth Buffer Precision

● Ideally, we want:
○ near = 0.00000001   // very near zero
○ far =                         // very far away

● Let's try...



Depth Buffer Precision

near = 35 m
far = 27,000,000 m



Depth Buffer Precision

near = 1 m
far = 27,000,000 m



Demo

● Depth Buffer Precision



Depth Buffer Precision

● Near-to-far ratio impacts depth buffer precision



Depth Buffer Precision



Depth Buffer Precision

Basic Solutions
● Push near plane out as far as possible?
● Push far plane out as far as possible?
● Use fog or blending in the distance?
● Remove distant objects?
● Complementary Depth Buffering



Logarithmic Depth Buffer

● Logarithmic distribution for 
● Trades close object precision for distant object precision
● Use a vertex shader or fragment shader

● C determines the resolution near the viewer...

See [Kemen09]



Logarithmic Depth Buffer



Demo

● Logarithmic Depth Buffer



Rendering with Multiple Frustums

● Maintain near-to-far ratio of 
1000 by using multiple view 
frustums rendered back to front

● Virtually infinite precision
● Performance Implications

○ Redundant computations
○ Culling
○ Careful batching
○ Early-z

● Visual artifacts...



Rendering with Multiple Frustums



Rendering with Multiple Frustums



Rendering with Multiple Frustums



Parallelism

 



Parallelism Everywhere

CPUs
● Instruction-level parallelism

○ Pipelining
○ Superscalar / Out-of-order execution

●  Data-level Parallelism
○ SIMD operations

● Thread-level Parallelism
○ Hyper-threading
○ Multicore

GPUs
● Rasterization is embarrassingly parallel
● SIMT



Parallelism

● Virtual globes use lots of data:
○ Terrain
○ Imagery
○ Vector data

● Rendering preparation requires
○ I/O
○ CPU-intensive processing

■ Triangulation
■ Texture-atlas packing
■ LOD creation
■ decompression

● What happens if preparation and rendering occur in the 
same thread?



Coarse-Grained Threads

Message queues are great for 
communicating between threads



Coarse-Grained Threads

● Doesn't fully utilize
○ A second core
○ I/O bandwidth

● Responsiveness is not ideal

● Use multiple workers...



Multiple Worker Threads

How many threads?
How to schedule?



Fine-Grained Threads

● Attempting better throughput but longer latency
● How many threads?



Other Architectures

● Asynchronous I/O
● Parallel Job Systems



Terrain

 



Terrain Representations - Height Map
● Grayscale image
● Intensity of pixel represents the 

height at that position
● Extruded pixels are called posts
● Most widely used representation in 

virtual globes
● No cliffs or caves



Terrain Representations - Voxels

● The 3D extension of a pixel
● Cliffs and caves are 

possible and common
● Rendered using raycasting 

or triangulated using 
marching cubes

● Often represented 
using       hierarchical data 
structures       like sparse 
octrees

● Uncommon in virtual globes

Images courtesy Eric 
Lengyel, Terathon Software 
LLC.



Terrain Representations - Implicit 
Surface

● Minimal data
● Terrain generated from an 

implicit function
○ Density function, fractal

● Entire real-world terrain as 
implicit surface not really feasible

● Virtual globes can use fractal fine 
detail to great effect

Image courtesy of 
NVIDIA Corporation 
and Ryan Geiss

Images courtesy 
of Brano 
Kemen, Outerra



Terrain Representations - TIN

● Triangular Irregular Network
● Basically just a triangle mesh!
● Large triangles cover flat regions
● Small triangles represent fine features



Rendering Height Maps
Create a Triangle Mesh on the CPU

● Create a vertex at each pixel location
● Connect surrounding vertices with triangle edges
● Reduce memory by sharing index buffer between tiles



Rendering Height Maps
Vertex-Shader Displacement Mapping

● Create a planar triangle mesh
● Pass the height map to the vertex shader as a texture
● Vertex shader samples the texture and displaces the 

vertex
● Much lower memory usage
● What about terrain on a globe?



Rendering Height Maps
GPU Ray Casting

● Render a simple axis-aligned bounding box 
(AABB) with front-face culling enabled

● Vertex Shader: pass AABB exit point to 
fragment shader

● Fragment Shader: compute AABB entry point, 
step along ray



Rendering Height Maps
GPU Ray Casting (continued)

● Compute entry and exit of each height map texel
● If the height of the ray is below the texel height, 

intersection occurs, so shade the fragment
● If all ray entry/exit points are above the terrain, 

discard the fragment



Shading Terrain
Color Maps

● Often derived from real satellite imagery
● Texture coordinates used in the fragment shader to 

sample a color map

Image (C) USDA Farm 
Service Agency and 
DigitalGlobe.  Taken 
using Google Earth.



Shading Terrain
Normals and Lighting

● Compute normals and shade based on realistic sun position
● With vertex displacement or GPU raycasting, normals can 

easily be computed in a shader

Color map only

With Lighting



Shading Terrain
Procedural Shading by Slope/Height

Height

Slope

Intensit
y

Color Ramp Blend Ramp



What about planet-sized terrains?

Popular virtual globes measure their terrain and
imagery data in terabytes!

How do we fit that on a machine?  Nevermind in GPU 
memory...

And worse, how in the world do we render it?

Today's GPUs can render hundreds of millions of triangles per 
second...  but we're a long way from trillions per frame!



Terrain Rendering Facts

Virtual globe terrain datasets:

● Consist of far too many triangles to render with brute-
force techniques.

○          We need terrain level of detail (LOD).

● Are much larger than available memory.
○          We need out-of-core (OOC) rendering.



Level of Detail

● LOD algorithms reduce an object's complexity when it 
contributes less to the scene

○ For example, objects in the distance are rendered 
with less geometry and lower resolution textures 
than nearby objects

● Generation creates different versions of a model
● Selection chooses the appropriate version of the 

model to render
● Switching changes from one version of a model to 

another

● Three broad types of LOD: Discrete, Continuous, and 
**Hierarchical**



Hierarchical Level of Detail (HLOD)

● Operates on chunks, patches, or tiles of terrain 
geometry

○ Levels of detail are generated, selected, and 
switched at this granularity.

● Chunks are organized in a hierarchical data structure 
such as a quadtree or octree

○ Higher-resolution chunks are logically children of 
lower-resolution chunks.



Why Hierarchical Level of Detail?

● Modern terrain-rendering algorithms focus on:
○ Reducing the processing done by the CPU
○ Reducing the quantity of data sent to the GPU
○ NOT on achieving an optimally small number of 

triangles

● In HLOD:
○ The CPU only needs to select and switch chunks, 

not individual triangles.
○ Chunks are valid for a wide range of views, so less 

overall data is sent to the GPU

● Plus: HLOD integrates naturally with out-of-core 
rendering (more on that later)



Hierarchical LOD Switching

How do we decide when to switch between chunks of 
different detail in an HLOD scheme?

Goal: Render with the simplest LOD possible while still 
rendering a scene that looks good.

But how do we determine whether an LOD will provide a 
scene that looks good?



Screen-Space Error
The number of pixels of difference that would result 
from rendering a lower-detail version of an object 
rather than a higher-detail version.



LOD Artifacts

Rendering problems introduced by an LOD scheme

● Cracking
○ Usually filled by skirts

● T-junctions - Tiny cracks caused by floating point rounding
○ Fill with degenerate triangles or skirts

Popping - Abrupt changes between different LODs
○ Blending, or Mantra of LOD: An LOD should only switch 

when that switch would be imperceptible to the user.



Preprocessing

Rendering a planet-sized terrain dataset at interactive frame 
rates requires that the terrain dataset be preprocessed.
                    We wish this weren't true, but it is!

Preprocessing arranges the data so that the subset we need
is available quickly.



Preprocessing Height Maps

At a minimum: mipmap and tile the height map

Some terrain rendering algorithms benefit from more 
aggressive preprocessing:

● Simplify "flat-ish" areas of the height map
● Compute geometric error bounds



Out of Core Rendering means...

Load-ordering policy - Bring new terrain data into memory 
as needed

 
 
 
 

Replacement policy - Unload old data to make room for 
new data

Prefetching - Predict the data that 
will be needed soon and load it

Out of core rendering is almost 
always a multithreaded process!



Horizon Culling
Don't render objects or terrain that are below the horizon



Geometry Clipmapping

Wherein we finally present a real 
terrain LOD algorithm

See [Losasso04]



Geometry Clipmapping
● Renders terrain data in the form of a mipmapped, tiled 

height map - minimal preprocessing required
● Extremely GPU friendly - impressive triangle throughput
● Relatively easy to implement
● Legacy GPUs need not apply - needs vertex texture fetch



Structure of Geometry Clipmaps

● A series of nested, regular grids (clipmap levels) are 
cached on the GPU

● Levels are centered around the viewer, incrementally 
updated with new data as the viewer moves



Structure of Geometry Clipmaps
● Level closest to the viewer has the highest detail
● Each successive level has half the detail, twice the area 

of the level before it
● Vertices of coarser level are coincident with vertices of 

finer level



Demo

● Geometry Clipmapping



Rendering Geometry Clipmaps

● �All levels are rendered with one set of static vertex 
and index buffers!



Blending Between Levels
● Vertices coincident in x-y must have the same height in 

adjacent clipmap levels
○ watertight mesh

● But they're displaced by different mipmap levels! 
● So, blend vertices near perimeter with next coarser level



Geometry Clipmap Update



Geometry Clipmap Update

● Clipmap levels always centered on the viewer
● Viewer moves east        entire height map shifts left
● How can we avoid rewriting the entire height texture?

○ Toroidal texture addressing



Geometry Clipmap Upsampling

The viewer moves and a new tile is needed to update a 
clipmap level height texture, but the tile is not in memory

What do we do?

Wait until the tile is available?
Draw the region with zero height?

Don't draw the region at all?

Upsample from coarser data!

Once the tile is loaded, the terrain improves



Wait a Minute...

How does any of this work for a globe rather 
than a plane?

Good question...



Geometry Clipmapping Rocks Because

● Very little horizontal coordinate data is needed
● The geometry is independent of the viewer

○ No jittering problems
● Terrain vertices are precisely aligned with height-

map texels
○ No aliasing artifacts

But accurate virtual globe rendering requires that we extrude 
from an ellipsoid rather than from a plane.

Is it possible to preserve these advantages?



Geometry Clipmapping on a Globe
Direct approach: transform Geodetic coordinates to 

Cartesian in the vertex shader

Problems with this approach:
● Precision on 32-bit GPUs
● Artifacts at the poles



Geometry Clipmapping on a Globe
Spherical Clipmapping

Problem with this approach:
● Aliasing



Geometry Clipmapping on a Globe
Flexible approach: Instead of storing just heights in the 

texture, store all three position components

Problems with this approach:
● Triple the data
● Steps necessary to avoid 

precision problems

Image courtesy of 
Anton Malischew



Chunked LOD

See [Ulrich02]



Chunked LOD
● Terrain organized as a quadtree of chunks of terrain
● A direct application of hierarchical HLOD to terrain 

rendering 
● Great control over the pixel accuracy of the terrain



Chunked LOD Structure

● Terrain is organized into a quadtree of chunks
● Chunks are rectangular triangle meshes
● Child chunks have half the area of their parent, and less 

geometric error
● Each chunk knows its geometric error relative to the 

original terrain data
● Each chunk knows its bounding volume



Chunk Generation

● Start with an input mesh (or height map)
● Simplify the mesh based based on the max geometric 

error at the most detailed level (possibly 0)
● Split the mesh into chunks based on the desired quadtree 

depth
● Simplify the mesh again for the next coarser level, 

allowing more geometric error, and divide it into one 
quarter as many chunks

● Continue to the root of the quadtree which has just one 
very simple chunk



Chunk Selection
● Each frame, traverse the quadtree depth-first
● For each chunk, compute the screen-space error

○ Under the limit       render the chunk
○ Over the limit       traverse children



Cracks Between Chunks

Adjacent chunks can be different LODs

This leads to cracking due to the additional vertices

We fill the chunks by dropping skirts below each chunk



Chunk Switching

● As the viewer moves, the level of detail of the terrain 
will change - chunks are refined and merged.

○ Sudden "pop" from one LOD to another.
● Make transitions seamless by blending each vertex to 

its morph target



Chunked LOD on a Globe

Fewer tradeoffs than with Geometry Clipmapping.

Generation must take curved surface into account.

Vertex blending must manipulate all
three components of position.

Use RTC or GPU RTE to avoid
jittering problems.



Which Algorithm Should I Use?
Most virtual globes incorporate aspects of multiple 

algorithms to tune their terrain engines to their specific 
needs.

Geometry Clipmapping Chunked LOD

Preprocessing Needs

Mesh Flexibility

Triangle Count

Ellipsoid Mapping

Error Control

Frame-Rate Consistency

Mesh Continuity

Terrain Data Size

Legacy Hardware Support
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Images and Imagery Sources

A K Peters / CRC Press
3D Engine Design for Virtual Globes 
http://www.virtualglobebook.com/

NASA Visible Earth
http://visibleearth.nasa.gov/
 

Natural Earth
http://www.naturalearthdata.com/

 
 

http://www.virtualglobebook.com/
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http://www.naturalearthdata.com/


Thank You

Questions?
Send course feedback to

authors@virtualglobebook.com

mailto:authors@virtualglobebook.com

