
Under the Hood of Virtual
Globes

Patrick Cozzi
Analytical Graphics, Inc.

University of Pennsylvania

Kevin Ring
Analytical Graphics, Inc.

Administrivia

● Download course slides:

http://www.virtualglobebook.com/

● Recording is OK
● Ask questions anytime
● Come and go as you please

We are informal

http://www.virtualglobebook.com/

Course Goals

● Enjoy pretty pictures and demos
● To gain an appreciation for and understanding of

graphics engines in virtual globes
● Useful for

○ Implementors
○ Integrators

● This course is not
○ A direct comparison of virtual globe engines
○ A tutorial on rendering effects like atmospheres

and oceans - maybe next year :)

Course Overview

● Our Background
● Ellipsoids
● Precision
● Parallelism
● Terrain

Our Background

STK

● First had a 3D,
spinning globe in
1993

● STK/VO - Visualization
 Option

● Ran on high-end, SGI IRIX
 workstations

● Emphasis on space and
 analytical accuracy

● Less emphasis on
 terrain and imagery (!)

STK Today

STK Today

Our Book

This course is based on a
subset of our upcoming
book:

3D Engine Design for Virtual
Globes

http://www.virtualglobebook.com/

http://www.virtualglobebook.com/

Foundations

Geographic and Cartesian Coordinates

● Lots of geospatial data uses geographic coordinates
(longitude, latitude, height)

○ KML, ESRI Shapefiles, etc.

● The video card wants Cartesian coordinates (x, y, z)
○ (long, lat, height) != (x, y, z)
○ What to do?

Geographic and Cartesian Coordinates

● Pick a Cartesian coordinate system, .e.g.,
○ WGS84 Coordinate System

■ World Geodetic System 1984

Geographic and Cartesian Coordinates

● Conversions between coordinate systems

○ Geographic Cartesian
■ Simple and closed form

○ Geographic Cartesian

■ Simple and closed form when height == 0
■ General case is iterative (our algorithm, at least)

■ Converges quickly for Earth

Ellipsoids

● WGS84 Ellipsoid
○ National Geospatial-Intelligence Agency’s (NGA)

latest model of Earth
○ Equatorial radius: 6,378,137 m
○ Polar radius: 6,356,752.3142 m
○ About 21,384 m longer at the equator than at the

poles
■ Not too important for imagery on the globe
■ Important when positioning objects above the

ground, e.g., aircraft, satellites, etc.

(exaggerated)

Ellipsoids

● Geodetic vs. Geocentric surface normals

● Geodetic vs. Geocentric latitude

Demos

● Geodetic vs. Geocentric normals

Ellipsoid Representations

Ellipsoid Representations

● Our ellipsoid is defined by an equatorial radius and
polar radius, but the video card wants triangles

● Solution: tessellation or ray casting

Platonic Solid Subdivision

Cube-Map Tessellation

Geographic-Grid Tessellation

Tessellation-Algorithm Comparisons

GPU Ray Casting

● Tessellation
○ Each algorithm has strengths and weaknesses
○ Needs LOD to balance triangle count vs. visual quality

● Rasterization: triangles pixels
Ray tracing: what triangles, or objects, affect a pixel?

● Ray cast ellipsoid's implicit surface
○ Infinite level of detail
○ No triangles - no problems at poles or IDL
○ Trivial memory requirements

GPU Ray Casting

● Downside: GPU 32-bit precision
○ Speaking of precision...

Demos

● GPU Ray Casting

High Precision Rendering

High Precision Rendering

● Rendering precision: a difference between virtual
globes and most game engines. How do we support:

○ Large WGS84 coordinates with 32-bit GPUs?
■ Vertex transform precision

○ Long view distances with a non-linear depth
distribution?

■ Depth buffer precision

● Disclaimer: Nowadays not all GPUs are 32-bit

Demo

● Jittering caused by vertex transform precision
○ http://blogs.agi.com/insight3d/index.php/2008/09/03/precisions-precisions/

http://blogs.agi.com/insight3d/index.php/2008/09/03/precisions-precisions/

Vertex Transform Precision

● CPUs: 64-bit
● Many GPUs: 32-bit

● Cause of jittering: insufficient precision in 32-bit floating-
point represents for large values like 6,378,137.

● IEEE-754 rules of thumb
○ 32-bit: 7 accurate decimal digits
○ 64-bit: 16 accurate decimal digits

Vertex Transform Precision

● Gaps between representable floating-point values

● Gap increases as values get further away from zero

Vertex Transform Precision

● Example matrix-vector multiply done in vertex shader:

Vertex Transform Precision

● Example matrix-vector multiply done in vertex shader:

● Jitter at 800 m view distance, but not 100,000 m. Why?

Large WGS84
position

Large
translation

Vertex Transform Precision

Solutions
● Scaling coordinates doesn't help. Why?
● Use the CPU's double precision or emulate it

on the GPU

Render Relative to Center (RTC)

Render Relative to Center (RTC)

● 1 cm accuracy for radius up to 131,071 m
● So, how do you render this?

Render Relative to Eye (RTE)

● Per-vertex on the CPU or on the GPU
with emulated double precision in the
vertex shader

See [Ohlarik08]

Depth Buffer Precision

● How can we render very close and very far
objects in the same scene?

Image courtesy of Brano Kemen, Outerra

Depth Buffer Precision

● How can we render very close and very far
objects in the same scene?

Depth Buffer Precision

● Ideally, we want:
○ near = 0.00000001 // very near zero
○ far = // very far away

● Let's try...

Depth Buffer Precision

near = 35 m
far = 27,000,000 m

Depth Buffer Precision

near = 1 m
far = 27,000,000 m

Demo

● Depth Buffer Precision

Depth Buffer Precision

● Near-to-far ratio impacts depth buffer precision

Depth Buffer Precision

Depth Buffer Precision

Basic Solutions
● Push near plane out as far as possible?
● Push far plane out as far as possible?
● Use fog or blending in the distance?
● Remove distant objects?
● Complementary Depth Buffering

Logarithmic Depth Buffer

● Logarithmic distribution for
● Trades close object precision for distant object precision
● Use a vertex shader or fragment shader

● C determines the resolution near the viewer...

See [Kemen09]

Logarithmic Depth Buffer

Demo

● Logarithmic Depth Buffer

Rendering with Multiple Frustums

● Maintain near-to-far ratio of
1000 by using multiple view
frustums rendered back to front

● Virtually infinite precision
● Performance Implications

○ Redundant computations
○ Culling
○ Careful batching
○ Early-z

● Visual artifacts...

Rendering with Multiple Frustums

Rendering with Multiple Frustums

Rendering with Multiple Frustums

Parallelism

Parallelism Everywhere

CPUs
● Instruction-level parallelism

○ Pipelining
○ Superscalar / Out-of-order execution

● Data-level Parallelism
○ SIMD operations

● Thread-level Parallelism
○ Hyper-threading
○ Multicore

GPUs
● Rasterization is embarrassingly parallel
● SIMT

Parallelism

● Virtual globes use lots of data:
○ Terrain
○ Imagery
○ Vector data

● Rendering preparation requires
○ I/O
○ CPU-intensive processing

■ Triangulation
■ Texture-atlas packing
■ LOD creation
■ decompression

● What happens if preparation and rendering occur in the
same thread?

Coarse-Grained Threads

Message queues are great for
communicating between threads

Coarse-Grained Threads

● Doesn't fully utilize
○ A second core
○ I/O bandwidth

● Responsiveness is not ideal

● Use multiple workers...

Multiple Worker Threads

How many threads?
How to schedule?

Fine-Grained Threads

● Attempting better throughput but longer latency
● How many threads?

Other Architectures

● Asynchronous I/O
● Parallel Job Systems

Terrain

Terrain Representations - Height Map
● Grayscale image
● Intensity of pixel represents the

height at that position
● Extruded pixels are called posts
● Most widely used representation in

virtual globes
● No cliffs or caves

Terrain Representations - Voxels

● The 3D extension of a pixel
● Cliffs and caves are

possible and common
● Rendered using raycasting

or triangulated using
marching cubes

● Often represented
using hierarchical data
structures like sparse
octrees

● Uncommon in virtual globes

Images courtesy Eric
Lengyel, Terathon Software
LLC.

Terrain Representations - Implicit
Surface

● Minimal data
● Terrain generated from an

implicit function
○ Density function, fractal

● Entire real-world terrain as
implicit surface not really feasible

● Virtual globes can use fractal fine
detail to great effect

Image courtesy of
NVIDIA Corporation
and Ryan Geiss

Images courtesy
of Brano
Kemen, Outerra

Terrain Representations - TIN

● Triangular Irregular Network
● Basically just a triangle mesh!
● Large triangles cover flat regions
● Small triangles represent fine features

Rendering Height Maps
Create a Triangle Mesh on the CPU

● Create a vertex at each pixel location
● Connect surrounding vertices with triangle edges
● Reduce memory by sharing index buffer between tiles

Rendering Height Maps
Vertex-Shader Displacement Mapping

● Create a planar triangle mesh
● Pass the height map to the vertex shader as a texture
● Vertex shader samples the texture and displaces the

vertex
● Much lower memory usage
● What about terrain on a globe?

Rendering Height Maps
GPU Ray Casting

● Render a simple axis-aligned bounding box
(AABB) with front-face culling enabled

● Vertex Shader: pass AABB exit point to
fragment shader

● Fragment Shader: compute AABB entry point,
step along ray

Rendering Height Maps
GPU Ray Casting (continued)

● Compute entry and exit of each height map texel
● If the height of the ray is below the texel height,

intersection occurs, so shade the fragment
● If all ray entry/exit points are above the terrain,

discard the fragment

Shading Terrain
Color Maps

● Often derived from real satellite imagery
● Texture coordinates used in the fragment shader to

sample a color map

Image (C) USDA Farm
Service Agency and
DigitalGlobe. Taken
using Google Earth.

Shading Terrain
Normals and Lighting

● Compute normals and shade based on realistic sun position
● With vertex displacement or GPU raycasting, normals can

easily be computed in a shader

Color map only

With Lighting

Shading Terrain
Procedural Shading by Slope/Height

Height

Slope

Intensit
y

Color Ramp Blend Ramp

What about planet-sized terrains?

Popular virtual globes measure their terrain and
imagery data in terabytes!

How do we fit that on a machine? Nevermind in GPU
memory...

And worse, how in the world do we render it?

Today's GPUs can render hundreds of millions of triangles per
second... but we're a long way from trillions per frame!

Terrain Rendering Facts

Virtual globe terrain datasets:

● Consist of far too many triangles to render with brute-
force techniques.

○ We need terrain level of detail (LOD).

● Are much larger than available memory.
○ We need out-of-core (OOC) rendering.

Level of Detail

● LOD algorithms reduce an object's complexity when it
contributes less to the scene

○ For example, objects in the distance are rendered
with less geometry and lower resolution textures
than nearby objects

● Generation creates different versions of a model
● Selection chooses the appropriate version of the

model to render
● Switching changes from one version of a model to

another

● Three broad types of LOD: Discrete, Continuous, and
Hierarchical

Hierarchical Level of Detail (HLOD)

● Operates on chunks, patches, or tiles of terrain
geometry

○ Levels of detail are generated, selected, and
switched at this granularity.

● Chunks are organized in a hierarchical data structure
such as a quadtree or octree

○ Higher-resolution chunks are logically children of
lower-resolution chunks.

Why Hierarchical Level of Detail?

● Modern terrain-rendering algorithms focus on:
○ Reducing the processing done by the CPU
○ Reducing the quantity of data sent to the GPU
○ NOT on achieving an optimally small number of

triangles

● In HLOD:
○ The CPU only needs to select and switch chunks,

not individual triangles.
○ Chunks are valid for a wide range of views, so less

overall data is sent to the GPU

● Plus: HLOD integrates naturally with out-of-core
rendering (more on that later)

Hierarchical LOD Switching

How do we decide when to switch between chunks of
different detail in an HLOD scheme?

Goal: Render with the simplest LOD possible while still
rendering a scene that looks good.

But how do we determine whether an LOD will provide a
scene that looks good?

Screen-Space Error
The number of pixels of difference that would result
from rendering a lower-detail version of an object
rather than a higher-detail version.

LOD Artifacts

Rendering problems introduced by an LOD scheme

● Cracking
○ Usually filled by skirts

● T-junctions - Tiny cracks caused by floating point rounding
○ Fill with degenerate triangles or skirts

Popping - Abrupt changes between different LODs
○ Blending, or Mantra of LOD: An LOD should only switch

when that switch would be imperceptible to the user.

Preprocessing

Rendering a planet-sized terrain dataset at interactive frame
rates requires that the terrain dataset be preprocessed.
 We wish this weren't true, but it is!

Preprocessing arranges the data so that the subset we need
is available quickly.

Preprocessing Height Maps

At a minimum: mipmap and tile the height map

Some terrain rendering algorithms benefit from more
aggressive preprocessing:

● Simplify "flat-ish" areas of the height map
● Compute geometric error bounds

Out of Core Rendering means...

Load-ordering policy - Bring new terrain data into memory
as needed

Replacement policy - Unload old data to make room for
new data

Prefetching - Predict the data that
will be needed soon and load it

Out of core rendering is almost
always a multithreaded process!

Horizon Culling
Don't render objects or terrain that are below the horizon

Geometry Clipmapping

Wherein we finally present a real
terrain LOD algorithm

See [Losasso04]

Geometry Clipmapping
● Renders terrain data in the form of a mipmapped, tiled

height map - minimal preprocessing required
● Extremely GPU friendly - impressive triangle throughput
● Relatively easy to implement
● Legacy GPUs need not apply - needs vertex texture fetch

Structure of Geometry Clipmaps

● A series of nested, regular grids (clipmap levels) are
cached on the GPU

● Levels are centered around the viewer, incrementally
updated with new data as the viewer moves

Structure of Geometry Clipmaps
● Level closest to the viewer has the highest detail
● Each successive level has half the detail, twice the area

of the level before it
● Vertices of coarser level are coincident with vertices of

finer level

Demo

● Geometry Clipmapping

Rendering Geometry Clipmaps

● �All levels are rendered with one set of static vertex
and index buffers!

Blending Between Levels
● Vertices coincident in x-y must have the same height in

adjacent clipmap levels
○ watertight mesh

● But they're displaced by different mipmap levels!
● So, blend vertices near perimeter with next coarser level

Geometry Clipmap Update

Geometry Clipmap Update

● Clipmap levels always centered on the viewer
● Viewer moves east entire height map shifts left
● How can we avoid rewriting the entire height texture?

○ Toroidal texture addressing

Geometry Clipmap Upsampling

The viewer moves and a new tile is needed to update a
clipmap level height texture, but the tile is not in memory

What do we do?

Wait until the tile is available?
Draw the region with zero height?

Don't draw the region at all?

Upsample from coarser data!

Once the tile is loaded, the terrain improves

Wait a Minute...

How does any of this work for a globe rather
than a plane?

Good question...

Geometry Clipmapping Rocks Because

● Very little horizontal coordinate data is needed
● The geometry is independent of the viewer

○ No jittering problems
● Terrain vertices are precisely aligned with height-

map texels
○ No aliasing artifacts

But accurate virtual globe rendering requires that we extrude
from an ellipsoid rather than from a plane.

Is it possible to preserve these advantages?

Geometry Clipmapping on a Globe
Direct approach: transform Geodetic coordinates to

Cartesian in the vertex shader

Problems with this approach:
● Precision on 32-bit GPUs
● Artifacts at the poles

Geometry Clipmapping on a Globe
Spherical Clipmapping

Problem with this approach:
● Aliasing

Geometry Clipmapping on a Globe
Flexible approach: Instead of storing just heights in the

texture, store all three position components

Problems with this approach:
● Triple the data
● Steps necessary to avoid

precision problems

Image courtesy of
Anton Malischew

Chunked LOD

See [Ulrich02]

Chunked LOD
● Terrain organized as a quadtree of chunks of terrain
● A direct application of hierarchical HLOD to terrain

rendering
● Great control over the pixel accuracy of the terrain

Chunked LOD Structure

● Terrain is organized into a quadtree of chunks
● Chunks are rectangular triangle meshes
● Child chunks have half the area of their parent, and less

geometric error
● Each chunk knows its geometric error relative to the

original terrain data
● Each chunk knows its bounding volume

Chunk Generation

● Start with an input mesh (or height map)
● Simplify the mesh based based on the max geometric

error at the most detailed level (possibly 0)
● Split the mesh into chunks based on the desired quadtree

depth
● Simplify the mesh again for the next coarser level,

allowing more geometric error, and divide it into one
quarter as many chunks

● Continue to the root of the quadtree which has just one
very simple chunk

Chunk Selection
● Each frame, traverse the quadtree depth-first
● For each chunk, compute the screen-space error

○ Under the limit render the chunk
○ Over the limit traverse children

Cracks Between Chunks

Adjacent chunks can be different LODs

This leads to cracking due to the additional vertices

We fill the chunks by dropping skirts below each chunk

Chunk Switching

● As the viewer moves, the level of detail of the terrain
will change - chunks are refined and merged.

○ Sudden "pop" from one LOD to another.
● Make transitions seamless by blending each vertex to

its morph target

Chunked LOD on a Globe

Fewer tradeoffs than with Geometry Clipmapping.

Generation must take curved surface into account.

Vertex blending must manipulate all
three components of position.

Use RTC or GPU RTE to avoid
jittering problems.

Which Algorithm Should I Use?
Most virtual globes incorporate aspects of multiple

algorithms to tune their terrain engines to their specific
needs.

Geometry Clipmapping Chunked LOD

Preprocessing Needs

Mesh Flexibility

Triangle Count

Ellipsoid Mapping

Error Control

Frame-Rate Consistency

Mesh Continuity

Terrain Data Size

Legacy Hardware Support

Selected References

[Kemen09] Brano Kemen. Logarithmic Depth Buffer. 2009
http://outerra.blogspot.com/2009/08/logarithmic-z-buffer.html

[Losasso04] Frank Losasso and Hugues Hoppe. Geometry
Clipmaps: Terrain Rendering Using Nested Regular Grids. 2004
http://research.microsoft.com/en-us/um/people/hoppe/proj/geomclipmap/

[Ohlarik08] Deron Ohlarik. Precisions, Precisions. 2008 http://blogs.
agi.com/insight3d/index.php/2008/09/03/precisions-precisions/

[Ulrich02] Thatcher Ulrich. Rendering Massive Terrains Using
Chunked Level of Detail Control. 2002
http://tulrich.com/geekstuff/sig-notes.pdf

http://outerra.blogspot.com/2009/08/logarithmic-z-buffer.html
http://research.microsoft.com/en-us/um/people/hoppe/proj/geomclipmap/
http://blogs.agi.com/insight3d/index.php/2008/09/03/precisions-precisions/
http://blogs.agi.com/insight3d/index.php/2008/09/03/precisions-precisions/
http://tulrich.com/geekstuff/sig-notes.pdf

Images and Imagery Sources

A K Peters / CRC Press
3D Engine Design for Virtual Globes
http://www.virtualglobebook.com/

NASA Visible Earth
http://visibleearth.nasa.gov/

Natural Earth
http://www.naturalearthdata.com/

http://www.virtualglobebook.com/
http://visibleearth.nasa.gov/
http://www.naturalearthdata.com/

Thank You

Questions?
Send course feedback to

authors@virtualglobebook.com

mailto:authors@virtualglobebook.com

